要颠覆整个物理界?印度科学家发布室温超导重磅成果

要颠覆整个物理界?印度科学家发布室温超导重磅成果
2018年09月12日 14:35 新浪科技综合

  来源:DeepTech深科技

  最近,印度科学界正处于一个非常时期:如果一篇新论文通过《Nature》的审核,那么印度将迎来其继拉曼效应后又一个世界重磅科学贡献。

  7 月 23 日,论文预本网站 arXiv 上面出现了一篇论文,标题翻译过来是:《室温和常压下超导体存在的证据》,作者是印度科学院固体物理和结构化学系的 Anshu Pandey 教授和他的博士生 Dev Kumar。他们在论文中声称,在室温和常压下,一种由金和银构成的纳米复合材料显现出了超导的特性。

  室温超导一直是学术界研究的热门话题,这个奇特的性质几度在科幻与现实之间摇摆,可望而不可及,很多物理学家愿意终其一生去寻找室温超导的答案。过去的几十年里不乏有关于“室温超导”的论文发出,每次都会引起学界不小的讨论。最后往往是讨论尘埃落定,大家铩羽而归。

图丨 Anshu Pandey(来源:印度科学院官网)图丨 Anshu Pandey(来源:印度科学院官网)

  论文发出后,印度凝聚态领域的理论物理大牛们难掩兴奋,毕竟这可能为印度带来又一项诺贝尔物理学奖。上一个获奖的印度人是著名的物理学家钱德拉塞卡拉•拉曼,他因著名的拉曼效应使他成为 1930 年诺贝尔物理学奖得主。

  理论物理学家 Vijay B。 Shenoy 在一次报告会上说为这项实验背书:“这很超导,如果实验属实,这种神奇材料背后的原理肯定会是一种全新的超导理论。”

  另一位印度超导研究的权威 T.V.Ramakrishnan 对媒体表示:“我认为,这个实验是真实的,很显然,电阻和磁化率的数据符合超导的要求,它们之间也吻合得很好。至于其背后的原理,当然是重要的,但也可以稍后做探索。至今人们为超导的原理还争论不休。”Shenoy 也补充到:“凝聚态领域几乎所有重要的理论都要晚于实验结果。”

  然而鉴于此次研究的重要意义,文章曝出后也引发学术界的热烈讨论,其中不乏对室温超导的质疑。一些实验物理学家认为,本次研究并不能成为发现室温超导的直接证据,而只是指出了一种可能性。

  更有麻省理工学院的学者指出,其文中的两组相互独立的关键数据竟出现完全一样的随机测量误差。这在科学界,就像是连续两期六合彩竟开出完全相同的中奖号码。

图 | 一块磁铁漂浮在超导体之上(来源:Wikimedia Commons)图 | 一块磁铁漂浮在超导体之上(来源:Wikimedia Commons)

  金银混合的纳米颗粒

  先从超导说起吧。

  但凡一种材料都会有电阻。金属的电阻很小,是良导体,因此它们被制成了传导电流的设备,比如铜制的电缆。但是在高压电缆上仍然会有严重的热损耗,如果用超导体制成的电缆就可以完美地解决这个问题。

  超导体,顾名思义,是一种超级导体,电阻为零。超导状态下的材料除了电阻快速降到零,还会有一个显著现象:完全抗磁性,即磁感线无法穿过一个超导体,因为超导体排斥了所有的外部磁场 (在磁场不大的情况下),从而使其内部磁场为零。把一个磁铁放放置于超导体上,它会漂起来,在外力的作用下零阻力的移动。这个现象也叫做迈斯纳效应,对于一个理想的超导体来说,体积磁化率—衡量物体被磁化的程度—为-1。

  理论上讲,超导体是各种电气设备的理想材料,用它制成的电缆可以零发热输送很高的电流,超导磁悬浮列车可以零阻力狂奔,是不是一片另人向往的生活前景?

  只可惜,虽然在过去的一个世纪里人们发现了很多超导体,从单质到复合物,再到复杂的化合物甚至是奇异物质,我们还是没有办法实现这些美好的生活愿景。因为这些超导体无一列外是低温超导,这个低温不是你家冰箱的冷冻室,也不是穿着短裤站在南极的冰面上,而是接近绝对零度 (-273°C) 的低温,这个温度下几乎所有气体都是液态。

图 | 实验中使用的电极,深灰色区域附有金银混合物薄片,薄片有 100nm 厚,黑色的长条长度为 3mm(来源:此次论文)图 | 实验中使用的电极,深灰色区域附有金银混合物薄片,薄片有 100nm 厚,黑色的长条长度为 3mm(来源:此次论文)

  那么,Pandey 的团队是在什么样的实验中发现室温超导的呢?

  这个实验说简单也简单,他们将直径为 1nm 的银颗粒嵌入到了金的网格中,并将这种混合物制备成了直径为 10-20 纳米的颗粒。值得注意的是,论文只提及了制作这种混合物的方法叫化学烧结法,对其详细过程并没有作详细描述。这些纳米颗粒进而再被制成薄片,附在电极上面,以方便测量其电阻。

  随着温度的降低,电阻刚开始并没有什么显著的变化,但是当温度降低到 230-240K 的区间时,电阻一下子从 0.7 欧降到了 100 毫欧。报告中说由于仪器精度的限制,他们推测实际的测量值可能还要更低。这意味着每单位长度的电阻将小于 0.1 纳欧,比普通金银的电阻整整低两个数量级。Pandey 估计了临界温度在 236K(-37.15°C)附近。临界温度随外磁场的升高而降低,也符合超导体的特性。

图 | 电磁特性随温度的变化。左为电阻,右为体积磁化率。(来源:此次论文)图 | 电磁特性随温度的变化。左为电阻,右为体积磁化率。(来源:此次论文)

  在抗磁性方面,Pandey 测量了材料的体积磁化率随温度的变化。发现它在临界温度附近从零降到了-0.06。这个值离理想超导体的-1 还差得很远,不过研究人员给出了一个理由,纯度不够。等效地说材料有 6% 的区域是超导。

  “这个实验做得很干净且有说服力”,数学科学研究所的 GanapathyBaskaran 教授说,“对于粒状超导来说,10%的超导占比已经不低了。”

  物理“圣杯”的争议:夸大其词?数据异常?

  目前为止,236K 的临界温度离室温还有一段距离,Pandey 在论文中仅仅提出了达到室温的一种可能性:降低材料中金的比例。在他们声称的另一项研究中,一块含有较少金成份的样品在温度降到 320K(46.85°C)时,其电阻骤降了三个数量级。这个温度已经要比赤道上很多地方的温度要高了。该样品的体积磁化率为 -0.037,也属于完全抗磁的范畴。

  不过,很多实验物理学家指出,这些证据最多指向了室温超导的可能性,并不能用为发现室温超导的直接证据。

  回到这次的研究上,关于为什么选择金和银做为素材,Pandey 仅仅在论文中说:“本着一种去寻找非声子模型的目的,我们才把注意力转移到用金和银制成的纳米结构的。”面对更多的提问,Pandey 选择了缄默。众多理论物理学家对他的回答采取了一种宽容的态度:“他们用这种材料肯定有其自身的原因,我相信在论文被接受发表之后,他们肯定会透露更多的细节的,”Shenoy 说。

  Ramakrishnan 已经开始动员印度科学家研究 Pandey 实验中的这种金银纳米结构了。“我们还要让化学家们参与进来,因为他们更懂得如何去制备这种纳米材料,而论文的作者也没有提供有用的细节。另一方面,物理学家还要研究这个结构的其它电磁性质,以及光学性质。我确信,世界上已经有好几个研究组着手研究了。”

  但是,在理论物理学家们的支持论调下,Pandey 的真正同行――实验物理学家――却显得更加严谨。一位不愿透露姓名的超导实验物理学家指出,实验的数据不完整,“论文标题是室温超导,而数据却只支持 236K 的超导。是这更像是一项尚未完成的工作,除非他们给 《Nature》 杂志提交了更完整的数据。”实验所能达到的测量精度则更让他纠心。“测量精度最好能达到 1 毫欧(1e-3 欧),也就是说压降精度要达到 1 纳伏 (1e-9 伏)。磁化率的数据也需要更精确。”

  他还指出实验缺乏一项关键数据――场冷却数据。这项数据在实验者先打开测量磁场后将样品冷却时获得。这项数据可以帮助计算出准确的超导区域占比,从而与磁化率进行交差验证。

  此外,还有对研究中数据质疑的声音出现。 8 月 10 日,一篇麻省理工学院 Brian Skinner 博士的文章对数据提出了疑问。这篇文章已提交在 arxiv预印本网站上。

  Brian Skinner 指出,研究中的两组数据十分奇特,下图为两组数据的放大图。该图描述了样品磁化率随温度的变化函数,是这项超导研究的关键数据。可以看出,图中蓝色部分和绿色部分的数据构成完全相同的形状,而只是位置向下移动。

图 | 原研究超导率函数图的放大图 (来源:ArXiv)图 | 原研究超导率函数图的放大图 (来源:ArXiv)

  Brian Skinner 博士对此表示,“数据出现的这一特征在我的认知内史无前例,而且并没有明显的理论能够解释。”

  如今这篇论文,从标题上看注定不会是一篇平常的论文,然而登出大半个月后,学术圈里出现了截然不同的两种声音。难道这又是一次“狼来了”的作秀,还是里面另有隐情?

  路漫漫其修远兮

  事实上,超导现象第一次被发现已经是一个世纪之前的事情了。

  像很多科学现象被发现的过程一样,超导现象也是在不断改进和提升技术的过程中被偶然发现的。20世纪初期,欧洲的机械工业化已经发展到了相当高的水平。当时世界上各个实验室都力图实现将沸点很低的氦气液化。1911年,莱顿大学的卡末林•昂内斯 (H.KamerlinghOnnes) 成功地将氦气液化到 4.2K(-269°C),这为他研究物质在极低温度下的性质提供了方便,也是在这个时候,他偶然发现了水银的超导现象。这个发现为他赢来了两年后的诺贝尔物理学奖,同时也开启了科学家探索超导体的热潮。

 图 | 卡 末 林•昂 内 斯 (右 ) 和 他 的 实 验 员 盖 芮 特灢菲 立 姆 (左 ) 于 1911 年 在 世界上首台氦液化器旁的照片 图 | 卡 末 林•昂 内 斯 (右 ) 和 他 的 实 验 员 盖 芮 特灢菲 立 姆 (左 ) 于 1911 年 在 世界上首台氦液化器旁的照片

  1980 年代之前,超导的研究还集中在单元素金属和多元合金中。通常称这些金属或金属合金的超导体为常规超导体, 这些材料包括水银,铝,铅和其它金属合金如铌锡,铌钛和铌锗合金。它们的临界温度 Tc(即从导体转变为超导体的温度)在 20K 以下,这个温度和液态氢的沸点差不多。

  彼时,超导转变温度太低,需要昂贵的液氦设备,科学家努力探索提高超导临界温度的途径。只是历史的发展总是一样,在一件标志性事件发生之前,人类的想像力总是受限,金属类的超导似乎并不能满足人们对高温超导的期望。

图 | 超导体的转变温度随被发现的时间的关系(来源:此次论文)图 | 超导体的转变温度随被发现的时间的关系(来源:此次论文)

  这一件标志性的事件发生在 1986 年。

  IBM 苏黎世研究院的德国科学家柏诺兹(J.Georg Bednorz) 和缪勒 (Karl A.Muller) 科学家对一种陶瓷材料已经研究了很久,这一年年底,他们发现钡镧铜氧化物(BaLaCuO 或 LBCO)在 33K以下表现出了超导的特性。

  现在来看,这个临界温度比它的金属前辈并没有高出多少,但是在那个年代已经是很高的温度了,而且突破了液氢的沸点,从此便可以用更廉价方便的液氮来降温。这两位科学家次年便被授予了诺贝尔物理学奖,这是为数不多的几次诺奖被授予了新的发现,可见这次高温超导的重要性。

  这是一个伟大的发现,它开创了高温超导体的井喷时代。在随后的十年里,陆续有新的铜氧化物在高温下表现出超导特性,临界温度从最开始的 33K 一路升到了 98K (YBaCuO)。1993 年,汞钡钙铜氧系统 (HgBaCaCuO) 的临界温度达到了最高的 138K(常压),在高压下(30 万个大气压)甚至可以达到 164K。而迄今为止最高的记录是 2015 年的 203K,值得注意的是,这一记录保持者不是铜氧系统,而是高压下的锍化氢系统。

  虽然 203K(-70°C)比南极温度还要低上那么一点点,但是它极大激发了人们的想像。南极已经到了,赤道还会远吗?这些高温超导中是否可以找到一些室温超导的蛛丝马迹呢?

  超导本质上是一个量子现象。1957 年,Bardeen、Copper 和Schrieffer 提出著名的 BCS 理论,对这一现象做了很好的解释。晶体的晶格振动往往以声子的形式呈现,电子与声子的相互作用可以产生一种“胶水”,使本来相互排斥的电子互相吸引,两两成对,这些配对的电子被叫做库珀对 (Cooper)。当材料的温度降低到临界温度以下时,所有电子库珀对都处于有序的相干的基态,它们像液体一样,共同从导体中穿过,与晶格之间不再发生散射。宏观上看,电子就在导体中无障碍传输了。而临界温度的存在,是因为较高温度下的晶格振动对库珀对造成了破坏。三人因此理论获得了 1972 年的诺贝尔物理学奖。

图 | “BCS 理论”创立者——巴丁 & 库珀 & 施里弗图 | “BCS 理论”创立者——巴丁 & 库珀 & 施里弗

  美国科学家麦克米兰基于 BCS 理论计算,认为超导临界温度不太可能超过 39K(-234℃),39K 这个温度也被称为“麦克米兰极限”。这个极限温度一度被主流学界所接受。

  回到这次的研究上,该项研究并没有在物理学家之间掀起轩然大波,也没有在博客上和社区上的引起人们的兴趣,大概是物理学家们都十分清楚,室温超导的份量和其承载的意义。

  如果室温超导真的成为可能,那么很多科幻作品里的设想就会变成现实。面对这样大的可能的发现,每人个都屏息凝神,静静地等待着 Nature 杂志的最后判决。可以肯定的是,如果 《Nature》 发表了这个发现,整个世界将为之哗然,超导理论发展将开展也新的篇章。

新浪科技公众号
新浪科技公众号

“掌”握科技鲜闻 (微信搜索techsina或扫描左侧二维码关注)

创事记

科学探索

科学大家

苹果汇

众测

来电聊

专题

官方微博

新浪科技 新浪数码 新浪手机 科学探索 苹果汇 新浪众测

公众号

新浪科技

新浪科技为你带来最新鲜的科技资讯

苹果汇

苹果汇为你带来最新鲜的苹果产品新闻

新浪众测

新酷产品第一时间免费试玩

新浪探索

提供最新的科学家新闻,精彩的震撼图片