飞船与着陆器
罗塞塔飞船的名字取自著名的埃及“罗塞塔”石碑,这块石碑上用几种不同的古代文字镌刻着一些法条。语言学家们借助对这块石碑的研究,破解了古代埃及文字之谜。科学家们希望这艘以“罗塞塔”的名字命名的飞船也将帮助我们揭开45亿年太阳系历史的谜团。
这艘欧洲飞船于2004年3月由一枚阿利安-5型火箭发射升空,随后沿着一条复杂的绕行借力轨道,借助地球和火星的加速飞向目标。今年1月,罗塞塔飞船被成功地从休眠模式中唤醒并开始进行抵达目标前的准备工作,最终在经过10年飞行之后于2014年8月6日与它的目标——“67P/楚留莫夫-格拉希门克彗星”交会。
罗塞塔飞船主体是一个 2.8 x 2.1 x 2.0米的结构体,其顶端安装科学载荷,而底部则安装其他辅助分系统。飞船上海安装有一台直径2.2米的高增益通讯天线,而在相反的另一面则搭载着着陆器“菲莱”。
在飞船的两侧安装有巨大的太阳能电池板,每一个“翅膀”都有32平米的受光面积,各自由5块较小的太阳能板组件构成,并可以进行正负180度的翻转。
当飞船接近彗星时,它会进行姿态控制,将其搭载的科学设备对准彗星,将其太阳能板对准太阳,而将它的通讯天线对准地球。
为了实现如此精确的姿态控制,除了一台主发动机之外,罗塞塔飞船上还安装有多达24台小型姿控发动机,每台可以提供约10牛顿的推力,大致相当于你手里拿起一个苹果的力量。罗塞塔飞船将近一半的质量都是它携带的推进剂。
而为了达成科学考察目的,罗塞塔飞船上一共搭载了11台科学设备,包括:
ALICE——紫外成像光谱仪,用于彗发与彗尾的气体成分分析,彗核水汽与二氧化碳/一氧化碳产生率观测,并协助判定彗核成分;
CONSERT ——彗核探测与无线电通讯实验,借助无线电在彗核表面的反射/散射信号特性,研判彗核内部结构;
COSIMA——彗星二次离子质谱仪,分析彗核释放出的尘埃颗粒性质,包括判别其物质成分,以及是否含有有机物;
GIADA——颗粒碰撞分析仪/尘埃采集器,用于测量尘埃颗粒的数量,质量,动量与速度,分布状况等信息;
MIDAS——微成像尘埃分析系统,分析彗星周围的尘埃环境,包括尘埃数量,大小,分布,形态等等;
MIRO——罗塞塔轨道器微波设备,用于判定主要气体丰度,彗核表面排气率,以及彗核浅地表温度;
OSIRIS——光学,光谱与红外遥感系统,拥有广角/窄角相机,可以获取高分辨率彗核图像;
ROSINA——罗塞塔轨道器离子与中性粒子光谱仪,包含两台探测设备,可以对彗星的大气/离子层进行考察;
RPC——罗塞塔飞船等离子体科学包,包括5台设备,对彗发进行分析,并监测彗星与太阳风粒子间的相互作用;
RSI——无线电科学实验,利用无线电信号频率偏移测量彗核的质量与引力场参数,反演彗核内部结构与密度状况,并进行轨道测定和彗发研究;
VIRTIS——可见光与红外热成像光谱仪,研判彗核固体物质成分,并测量地表温度,并帮助选取着陆器的着陆位置;
如前所述,罗塞塔飞船上还携带有一颗重约100公斤的小型着陆器,名为“菲莱”(Philae)。这是以埃及尼罗河中发现罗塞塔石碑的一座小岛的名字命名的。在今年的11月份,这艘着陆器将会与母船分离,并使用特殊的“鱼叉”三足固定系统着陆彗星表面。这将是人类历史上首次着陆一颗彗星的表面。
已收藏!
您可通过新浪首页(www.sina.com.cn)顶部 “我的收藏”, 查看所有收藏过的文章。
知道了